Finding k Disjoint Paths in Multi-Cost Networks

Leepila Ruchaneeya
Department of Information and Communication Engineering
The University of Electro-Communications
Outline

- Introduction
- Motivation
- k-penalty with auxiliary cost matrix (KPA) scheme
- k-penalty with initial cost matrix (KPI) scheme
- Illustrative Numerical Examples
- Numerical Results
- Conclusion
Introduction

- Survivability networks
 - A failure of any network element may lead to significant data and revenue losses.
 - A disjoint path routing enhances the survivability of a network
 - Survivability is provided by backup paths that used to restored the effected traffic after failure of working (active) paths.
Introduction

Fig. 1. Active and backup path in a network
Introduction

- Single-cost networks
 - The cost of each network arc a_h remains the same for each of k paths of a demand

Fig. 2. Single-cost network
Introduction

- Multi-cost networks

 - The cost of any arc a_h may be different for each of k paths

 - Applying the backup path sharing.
 - The cost of an arc a_h in a backup path is often the fraction of its original cost, used in working path computation.

Fig. 3. Multi-cost network
Motivation

- KPA scheme is a scheme to find k-disjoint paths in multi-cost network.
- Sometimes KPA cannot find disjoint paths even though the disjoint paths of a demand exist.
- The KPI scheme is developed from KPA scheme and proposed to avoid the problem as mentioned above.
- The summation of total path costs is minimized by using KPI scheme.
KPA Scheme

INPUT

- A demand d_r to find the set of end-to-end k-disjoint paths between a pair of nodes (s_r, t_r)
- The matrices Ξ_1, Ξ_2, ..., Ξ_k of arc costs (one matrix for each path of a demand)
- The upper bound i_{upper} on the number of allowed conflicts

OUTPUT

- The set of k disjoint paths η_1, η_2, ..., η_k - all between a given pair of demand source and destination nodes (s_r, t_r)
- The summation of k disjoint paths costs
KPA Scheme

- **Terminology**
 - d_r: demand to find the set of end-to-end k disjoint paths between a pair of nodes (s_r, t_r)
 - s_r: source node of demand d_r
 - t_r: destination node of demand d_r
 - i_{upper}: the number of allowed conflicts
 - p: index of path $1, \ldots, k$
 - η_p: p-th path
 - a_h: h-th arc in network
 - ξ_h: cost of each network arc a_h
 - ξ_h^p: cost of arc a_h of p-th path
 - ξ^p: path cost of arcs that are transversed by p-th path
 - Ξ^p: matrix of arc costs ξ_h^p
 - Ξ^{tmp}: auxiliary matrix of arc costs ξ_h^{tmp}
 - i_c: conflict counter
KPA Scheme

- **Step 1** Set $i_c = 1$ and $\xi_{h}^{tmp,p} = \xi_{h}^{p}$ for $p=1,\ldots,k$ for each network arc a_h.
- **Step 2** Set $j = 1$.
- **Step 3** For each network arc a_h, set $\xi_{h}^{tmp} = \xi_{h}^{tmp,j}$.
- **Step 4** Consider each path η_i from the set of previously found $j-1$ paths and for each arc a_h, if a_h is a forbidden arc* of the path, then increase the arc cost ξ_{h}^{tmp} by path cost $\xi_{h}^{tmp,i}$ of η_i on the network with costs matrix $\Xi_{tmp,i}$.
- **Step 5** Find the shortest path η_j on the network with costs matrix Ξ_{tmp}.
- **Step 6** If η_j is disjoint with the previously found $j-1$ paths then set $j = j + 1$ and go to Step 7.
 - else
 - a) Increase the costs $\xi_{h}^{temp,1}$, \ldots, $\xi_{h}^{temp,k}$ of each conflicting arc** a_h of η_j by path cost ξ_{h}^{tmp} of η_j on the network with costs matrix Ξ_{tmp}; delete the found paths and set $i_c = i_c + 1$.
 - b) if $i_c > i_{upper}$ then terminate and reject the demand, else go to Step 2.
- **Step 7** If $j > k$ then terminate and return the found set of paths else go to Step 3.
Fig. 4. Example of the KPI scheme for a demand $d_r=(1,7)$ and $k = 3$ in the multi-cost network.
Illustrative Numerical Example

Find the common node between 2 paths (conflicting node)
Illustrative Numerical Example

Path cost = 11

Path cost = 29

Path cost = 27

Path cost = 64

Path cost = 67

1-3-6-7

1-2-5-7

1-4-7
KPI Scheme

Step 6 If η_j is not disjoint with the previously found j-1 paths then

a) Increase the costs $\xi_{h_{\text{tmp},1}}$, ..., $\xi_{h_{\text{tmp},k}}$ of each conflicting arc a_h of η_j by path cost ξ_j of η_j on the network with initial costs matrix Ξ_j
Illustrative Numerical Example

Path cost = 3

Path cost = 4

Path cost = 7

Path cost = 7

Path cost = 11

Path cost = 15

Path cost (org) = 5

1-2-5-7

1-4-7

1-3-6-7
Numerical results

The simulation is to find k disjoint paths in case of $k = 3$, so additional links, shown as dashed lines in both networks, provide the degree of each node greater than or equal to 3.
Numerical Results

Fig. 6. Cumulative k disjoint paths finding success rate (%) at each i_{upper} of finding k disjoint paths on U.S. long-distance network.
Numerical Results

Fig. 7. Cumulative k disjoint paths finding success rate (%) at each i_{upper} of finding k disjoint paths on Italian network.
Numerical Results

Fig. 8. Normalized summation of k disjoint paths costs on U.S. long-distance network and Italian network by using Bhandari’s, KPA and KPI scheme
Conclusion

- KPI scheme is able to find the required number of k disjoint paths faster than the KPA scheme.

- Consider the summation of k disjoint paths costs, the KPI scheme gets the summation of costs lower than costs of k disjoint paths that are found by KPA scheme.
Thank you for your attention